Experimental measurement-device-independent verification of quantum steering.

نویسندگان

  • Sacha Kocsis
  • Michael J W Hall
  • Adam J Bennet
  • Dylan J Saunders
  • Geoff J Pryde
چکیده

Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conclusive quantum steering with superconducting transition-edge sensors

Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted ...

متن کامل

Heralded quantum steering over a high-loss channel

Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We des...

متن کامل

Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. H...

متن کامل

Design Modification of Rogowski Coil for Current Measurement in Low Frequency

The principle object of this paper is to offer a modified design of Rogowski coil based on its frequency response. The improvement of the integrator circuit for nullifying the phase difference between the waveforms of the measured-current and the corresponding terminal voltage is a further object of this investigation. This paper addresses an accurate, yet more efficient measuring and protect...

متن کامل

Demonstrating continuous variable Einstein–Podolsky– Rosen steering in spite of finite experimental capabilities using Fano steering bounds

Received October 30, 2014; revised January 22, 2015; accepted January 27, 2015; posted January 29, 2015 (Doc. ID 225865); published February 24, 2015 We show how one can demonstrate continuous-variable Einstein–Podolsky–Rosen (EPR) steering without needing to characterize entire measurement probability distributions. To do this, we develop a modified Fano inequality useful for discrete measurem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015